Sniper®
Balloon Occlusion Microcatheter

Instructions for Use
IMPORTANT! Please read before use.

**Description**

The Sniper is a dual lumen catheter comprised of an inner guidewire/infusion lumen and an outer, annular lumen to inflate and deflate the balloon. The guidewire/infusion port may be used to inject contrast media or therapeutic agents following removal of the guidewire. The catheter has two radiopaque markers: one marker at the distal tip and another in the center of the balloon. The Sniper is available in a variety of working configurations: lengths (110 cm, 130 cm, 150 cm); tip shapes (straight and angled) to support challenging anatomy (See Figure 1 and Table 1).

**Figure 1: **Sniper Balloon Occlusion Microcatheter (applicable to straight and angled tip)

**Product Specifications / Compatibility**

<table>
<thead>
<tr>
<th>OUTER DIAMETER</th>
<th>INNER DIAMETER</th>
<th>GUIDEWIRE</th>
<th>MIN GUIDING CATHETER ID</th>
<th>HYDROPHILIC COATING LENGTH</th>
<th>DEAD SPACE VOLUME</th>
<th>MAX INJECTION PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2/2.9F (0.74/0.97mm)</td>
<td>0.020”/0.5 mm</td>
<td>0.014” or 0.016”</td>
<td>≥ 0.038”/0.9 mm</td>
<td>70 cm</td>
<td>0.32 ml (110 cm)</td>
<td>900 psi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.36 ml (130 cm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.41 ml (150 cm)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BALLOON DIAMETER</th>
<th>BALLOON DEFLATION TIME</th>
<th>BALLOON INFLATION TIME</th>
<th>BALLOON INFLATION VOLUME</th>
<th>EMBOLIC AGENTS</th>
<th>COILS</th>
<th>EMBOLIC BEADS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 6 mm</td>
<td>&lt;40 sec (50% contrast solution)</td>
<td>&lt;20 sec (50% contrast solution)</td>
<td>Up to 0.25 ml</td>
<td>Lipiodol®, Y-90 microsphere, Gelfoam, Glue (n-bCA)</td>
<td>≤ 0.018”</td>
<td>Up to 900 µm</td>
</tr>
</tbody>
</table>

**Table 1:** Product Specifications / Compatibility Information

**Packaging Contents**

- (1) Sniper occlusion balloon microcatheter
- (1) Flush, priming, deflation syringe (10 ml)
- (1) Inflation syringe (0.25 ml)
- (1) Balloon port valve

---

1 Consult your sales representative for local market clearance and availability. Please refer to the product packaging for catheter length and tip angle.

2 Physician reported cases. Data on file. Embolx does not make any claims. For informational purposes only.


4 Optiray® 320 (Ioversol injection 68%; Guerbet LLC) contrast solution.

**Note:** A 65 cm diagnostic catheter is recommended for use with the 110 cm Sniper catheter.
### Indications for Use

Sniper balloon occlusion microcatheter is intended for use in the blood vessels of the peripheral vasculature where temporary occlusion is desired and offers a vessel selective technique of temporary vascular occlusion for selectively stopping or controlling blood flow. The Sniper balloon occlusion microcatheter is also intended to assist in the delivery of diagnostic agents such as contrast media and therapeutic agents into the peripheral vasculature.

### Contraindications


### Adverse Events

Possible adverse effects include, but are not limited to, the following: death, acute vessel closure, vessel perforation, vessel dissection, ischemia, hemorrhage or hematoma, drug reactions (allergic reaction to contrast medium), hypotension, hypertension, infection, arteriovenous fistula, vasospasm, stroke (air embolism and embolization or fragmentation of thrombotic or atherosclerotic material).

### Warnings

- The Sniper balloon occlusion microcatheter is intended for SINGLE USE ONLY; DO NOT RE-STERILIZE; DO NOT REUSE.
- When the catheter is exposed to the vascular system, it should be manipulated while under high-quality fluoroscopic observation. Do not advance or retract the catheter unless the balloon is fully deflated under vacuum. If resistance is met during manipulation, determine the cause of the resistance before proceeding.
- Presence of calcifications or irregularities may damage the balloon or prevent its entry or removal.
- Balloon volume should not exceed the rated burst volume. The rated burst volume is based on the results of in vitro testing. Use of a volumetric monitoring device is recommended to prevent over-filling.
- Do not exceed the maximum recommended inflation volume of 0.25ml (after priming catheter) as balloon rupture may occur.
- To reduce the potential for air embolus into the vessel, use only the recommended balloon inflation medium. Never use air or any gaseous medium to inflate the balloon.
- Careful fluoroscopic observation of the catheter balloon inflation and deflation in-vivo is essential for patient safety.
- Do not attach a high-pressure device on the balloon inflation port as this may rupture the balloon.
- Pressure in the guidewire/injection lumen should not exceed the maximum pressure rating of 900 psi (6205 kPa). Excessive pressure may cause leakage or rupture of the catheter.
- Do not over-tighten the RHV around the catheter. This could affect inflation and deflation of the balloon.
- Do not advance the catheter against resistance. If slight resistance is felt, pull back slightly and assess source of resistance using visual and fluoroscopic means.
- Careful fluoroscopic observation of the catheter inflation and deflation in-vivo is essential for patient safety.
- Do not use a catheter if the device or packaging has been damaged.
- Do not torque the catheter if impinged. Deformation, kink, bend or loss of functionality could develop with excessive twisting of catheter.

### Precautions

- Use the catheter prior to the “Expiration date” specified on the package.
- Carefully inspect all devices before use to confirm the size, shape, length and condition are appropriate for the specific procedure and compatible with accessory devices.
- Verify the size of the vessel under fluoroscopy. Ensure that the balloon diameter is appropriately sized for the diameter of the vessel.
- Once the catheter is hydrated, do not allow it to dry.
- Once removed, do not re-insert a hydrated catheter into its packaging.
- Higher viscosity and/or concentration of the contrast solution can increase balloon inflation and deflation times.
- If back-loading the catheter over a guidewire, ensure the distal tip of the catheter is not damaged.
- Make sure the balloon inflation valve remains snugly attached to the balloon inflation port.
- The catheter should only be advanced, withdrawn or manipulated with a guidewire in place.
- When using with a Power Injector, limit input to no greater than 900 psi.
- This balloon is not intended for the expansion or delivery of a stent.
• This balloon is not intended for the treatment of in-stent restenosis (ISR).
• The catheter system should be used only by physicians trained in the use of infusion catheters for balloon occlusion in the peripheral vasculature

Chemical Compatibility

Lipiodol® (Guerbet LLC): The Sniper balloon occlusion microcatheter is compatible with Lipiodol.

Power Injection

Do not exceed 900 psi (6205 kPa). Flow rates at 900 psi based on usable length of the device using 100% contrast solution at 37⁰ C are at least: 150cm: 0.8ml/s | 130cm: 0.9ml/s | 110cm: 1.0ml/s. Flow rates are impacted by pressure & viscosity, as such the parameters used, temperature and concentration of contrast may give different results.

Preparations for Use

1. Prior to removing the catheter from the hoop, hydrate the catheter using the 10 ml syringe filled with 10 ml saline. Connect syringe directly to inside end of hoop and inject saline to flush. Refill the syringe with saline. Connect the syringe to the Sniper’s injection port and inject saline to flush. Caution: Once the catheter is hydrated, do not allow it to dry.
2. Remove the catheter from the packaging hoop. Caution: Once removed, do not re-insert a hydrated catheter into its packaging.
3. Inspect the Sniper catheter for physical damage.
4. Prepare a contrast solution using sterile saline per hospital standard. The expected inflation and deflation times with recommended 50% solution is less than 20 and 40 seconds respectively. Caution: Viscosity of the contrast solution will affect inflation and deflation times.
5. Flush the catheter guidewire/infusion lumen per hospital catheter-use procedures using saline. WARNING: Pressure in the guidewire/injection lumen should not exceed the maximum pressure rating of 900 psi (6205 kPa). Excessive pressure may cause leakage or rupture of the catheter. Note: In order to achieve optimal performance and to maintain lubricity, it is important that flush solution be maintained between the catheter and guiding catheter, and all intraluminal devices. Flushing aids in preventing contrast crystal formation and/or clotting on the intraluminal device and inside the balloon lumen.
6. Remove the balloon port valve from the packaging pouch and snugly attach to the balloon port for contrast media injection using the 0.25 ml syringe (see Figure 2). Note: If the balloon port valve is not sufficiently tightened to balloon port, the balloon may unexpectedly deflate while in use.
7. Advance a guidewire through the guidewire/infusion port and into the catheter. Caution: If back-loading the catheter over a guidewire, ensure the distal tip of the catheter is not damaged.
8. Attach one of the RHV to the guiding catheter and the other one to the guidewire/inflation port of the Sniper catheter.

Optiray® 320 (ioversol injection 68%; Guerbet LLC) contrast solution
**Figure 2: Procedural Setup and Configuration**  
(showing balloon catheter inserted into a guiding catheter and sheath)

### Balloon Priming

1. Submerge distal tip in saline bath.
2. Fill 10 ml syringe with 2ml of 50% contrast. Connect syringe to the balloon port valve. Hold syringe vertical. Pull syringe plunger to top position and hold for 5-10 seconds. Tap hub with finger to work out bubbles until no bubbles are seen rising in contrast. Release the plunger slowly down onto contrast.
3. Remove syringe from the balloon port and exhaust air from syringe.
4. Connect the balloon port valve to the balloon port. **Caution:** Make sure the balloon port valve remains snugly attached to the balloon port.
5. Connect 10 ml syringe filled with 2 ml of 50% contrast to the balloon port valve on balloon port.
6. Pull syringe plunger to top lock position and place Sniper in saline bath. Let sit for at least 3 minutes.
7. Remove syringe from valve.

### Directions for Use

1. Confirm the balloon port valve is firmly attached to the balloon port.
2. Open the RHV of the guiding catheter until it allows introduction of the catheter and guidewire assembly. After insertion, carefully tighten the RHV around the catheter so as to prevent back flow, yet still enable catheter advancement. **WARNING:** Do not over-tighten the RHV around the catheter. This could affect inflation and deflation of the balloon.
3. Advance the catheter with the guidewire in place. Use fluoroscopic visualization to reach the desired location. Radiopaque markers can be used to visualize catheter placement. **WARNING:** Do not advance the catheter against resistance. If slight resistance is felt, pull back slightly and assess source of resistance using visual and
fluoroscopic means. Slight resistance may be felt through a tight turn, if this is the case, advance slowly with small strokes until the catheter resistance minimizes or position is reached. **NOTE:** Flushing with saline will minimize resistance.

4. To inflate balloon:
   a. Use 0.25 ml syringe filled with 0.25 ml of 50% contrast. Connect syringe to the balloon port valve on the balloon port.
   b. Inject 0.05 ml. Under fluoroscopy, watch for balloon inflation. **NOTE:** There will be a delay between injection and inflation.
   c. Incrementally inject contrast until the balloon is visualized as contouring the vessel wall. A distal shift of the balloon may occur which is normal and expected. (Refer to Figure 3 for approximate balloon diameters as related to injected volumes.) **WARNING:** Do not exceed the maximum recommended inflation volume of 0.25 ml as balloon rupture may occur (see Figure 3). **WARNING:** Careful fluoroscopic observation of the catheter inflation and deflation in-vivo is essential for patient safety. **WARNING:** Do not attach a high-pressure device on the balloon inflation port as this may rupture the balloon. **WARNING:** Do not use a catheter that has been damaged. **WARNING:** Do not inflate the balloon with air or gas while in the body.

5. Remove syringe from the balloon port valve to maintain balloon inflation. The balloon port valve must remain firmly secured to balloon port.

6. Remove guidewire and continue with the procedure as directed by the physician.

7. If an embolic agent is used, slowly inject the embolic agent into the guidewire/infusion port to maintain low pressure and slow particle flow.

8. Visualize under fluoroscopy to determine if the embolization endpoint has been reached.

9. At the end of the procedure, deflate the balloon. Reattach the 10 ml syringe to the balloon port valve and aspirate. Use fluoroscopic visualization to confirm balloon deflation. Once deflated, safely withdraw the catheter over or with the guidewire. **Note:** If the balloon is not deflating, check to ensure that the RHV is not too tight.

10. Dispose of used devices per hospital protocol.

### Balloon Inflation Parameters

<table>
<thead>
<tr>
<th>Balloon Diameter (mm)</th>
<th>Volume added (after priming)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.01 ml (10 µl)</td>
</tr>
<tr>
<td>3</td>
<td>0.02 ml (20 µl)</td>
</tr>
<tr>
<td>4</td>
<td>0.05 ml (50 µl)</td>
</tr>
<tr>
<td>5</td>
<td>0.10 ml (100 µl)</td>
</tr>
<tr>
<td>6</td>
<td>0.15 ml (150 µl)</td>
</tr>
</tbody>
</table>

**Figure 3:** Balloon Inflation Volumes

### How Supplied

The Sniper balloon occlusion catheter is intended for SINGLE USE ONLY. DO NOT RE-STERILIZE. DO NOT REUSE. Discard the catheter after one procedure. Structural integrity and/or function may be impaired through reuse or cleaning. Catheters are extremely difficult to clean after exposure to biological materials and may cause adverse patient reactions if reused. Embolx will not be responsible for any product that is re-sterilized. As long as the packaging is not opened or damaged, the Embolx Sniper catheter is sterile and non-pyrogenic. Product is not made from natural rubber latex.

### Storage

Store in a cool, dry place.
**Definition of Symbols**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Reference</th>
<th>Symbol Title</th>
<th>Explanatory Text</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Manufacturer" /></td>
<td>ISO 15223-1 §5.1.1</td>
<td>Manufacturer</td>
<td>Indicates the medical device manufacture.</td>
</tr>
<tr>
<td><img src="image" alt="Use-by date" /></td>
<td>ISO 15223-1 §5.1.4</td>
<td>Use-by date</td>
<td>Indicates the date after which the medical device is not to be used.</td>
</tr>
<tr>
<td><img src="image" alt="Catalogue or model number" /></td>
<td>ISO 15223-1 §5.1.6</td>
<td>Catalogue or model number</td>
<td>Indicates the manufacturer's catalogue number so that the medical device can be identified.</td>
</tr>
<tr>
<td><img src="image" alt="Serial number" /></td>
<td>ISO 15223-1 §5.1.7</td>
<td>Serial number</td>
<td>Indicates the manufacturer's serial number so that a specific medical device can be identified.</td>
</tr>
<tr>
<td><img src="image" alt="Batch code" /></td>
<td>ISO 15223-1 §5.1.5</td>
<td>Batch code</td>
<td>Indicates the manufacture's batch code so that the batch or lot can be identified.</td>
</tr>
<tr>
<td><img src="image" alt="Sterilized by ethylene oxide treatment" /></td>
<td>ISO 15223-1 §5.2.3</td>
<td>Sterilized by ethylene oxide treatment</td>
<td>Indicates a medical device that has been sterilized using ethylene oxide.</td>
</tr>
<tr>
<td><img src="image" alt="Do not reuse" /></td>
<td>ISO 15223-1 §5.4.2</td>
<td>Do not reuse</td>
<td>Indicates a medical device that is intended for one use, or for use on a single patient during a single procedure.</td>
</tr>
<tr>
<td><img src="image" alt="Consult instructions for use" /></td>
<td>ISO 15223-1 §5.4.3</td>
<td>Consult instructions for use</td>
<td>Indicates the need for the user to consult the instructions for use. Available at <a href="http://www.embolx.com">www.embolx.com</a></td>
</tr>
<tr>
<td><img src="image" alt="Do not use the product if the package is damaged" /></td>
<td>ISO 15223-1 §5.2.8</td>
<td>Do not use the product if the package is damaged.</td>
<td>Indicates a medical device that should not be used if the package has been damaged or opened.</td>
</tr>
<tr>
<td><img src="image" alt="Recommended Guidewire" /></td>
<td>Embolx, Inc.</td>
<td>Recommended Guidewire</td>
<td>Indicates the recommended guidewire size to use with the Sniper device.</td>
</tr>
<tr>
<td><img src="image" alt="Prescription only" /></td>
<td>21 CFR 801.109</td>
<td>Prescription only</td>
<td>Requires prescription in the United States.</td>
</tr>
<tr>
<td><img src="image" alt="Quantity" /></td>
<td>ISO 80000-1 §3.1</td>
<td>Quantity</td>
<td>Quantity of package contents.</td>
</tr>
<tr>
<td><img src="image" alt="Non-pyrogenic" /></td>
<td>ISO 15223-1 § 5.6.3</td>
<td>Non-pyrogenic</td>
<td>Indicates a medical device that is non-pyrogenic.</td>
</tr>
<tr>
<td><img src="image" alt="CE Marking" /></td>
<td>MDD (Medical Device Directive) 93/42/EEC</td>
<td>CE Marking</td>
<td>When labeled, cleared for sale in the EU.</td>
</tr>
</tbody>
</table>

**Warranty**

Embolx, Inc. warrants that this medical device is free from defects in both materials and workmanship. Any other express or implied warranties, including warranties of merchantability or fitness, are hereby disclaimed. Suitability for use of this medical device for any particular surgical procedure should be determined by the user in conformance with the manufacturer's instructions for use. There are no warranties that extend beyond the description on the face hereof.

Refer to the *Instructions for Use* digital version at www.embolx.com.